Обработка непрерывным излучением

Где — коэффициент температуропроводности, здесь к — коэффициент теплопроводности; с и v — теплоемкость и плотность материала; r — радиус сфокусированного пятна; v — скорость об­работки; Ln — удельная теплота плавления; Ро=АР — эффектив­ная мощность лазерного теплового источника, здесь А — поглощательная способность материала; Р — мощность лазерного излу­чения.

Во многих случаях для выбора режимов обработки уста на вли­ваются экспериментальные зависимости, позволяющие в практи­ческих условиях для конкретных материалов оценить параметры процесса. На рис. II показана номограмма для выбора режимов упрочнения инструментальных сталей. Исходными данными Для номограммы являются требуемые микротвердость и глубина уп­рочненного слоя. В качестве энергетического параметра не пол v. гу­стея плотность энергии излучения где t — время воздействия лазерного излучения. По зависимостям и устанавливаются плотность энергии излучения, соответствующая заданным h и H В зависимости от возможностей технологического оборудования и с учетом обеспечения максимальной производительности выбива­ются мощность излучения, диаметр пятна фокусирования и опре­деляется достигаемая плотность мощности излучения. По установ­ленным We и q определяется длительность воздействия излучения.

По диаметру пятна фокусирования du и времени t воздействия излучения определяется скорость v относительного перемещения лу­ча и обрабатываемой поверхности.

С помощью номограммы (на рис. 4) можно решить и обратную задачу — по заданным энергетическим параметрам излучения и скорости обработки определить глубину и твердость упрочненного слоя.

Рис 4. Монограмма для выбора режимов упрочнения непрерывным излучением

Перейти на страницу: 1 2 

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.