Для количественного описания формы линии, обусловленной дипольным уширением, необходимо развить формализм.
Когда все спины образца связаны друг с другом дипольным взаимодействием, представление об отдельных независимых спинах, находящихся в стационарных состояниях, становится неверным. Этот вывод следует хотя бы из того факта, что вращающееся локальное поле, созданное одним спином, приводит к переориентации его соседей. Поэтому образец приходится рассматривать как единую большую систему спинов, а переходы, вызванные радиочастотным полем, — как переходы между различными энергетическими уровнями этой системы. Соответственно изменяется и статистическое описание с использованием матрицы плотности. Вместо статистического ансамбля спинов, описываемых (2I +1) ´ (2I +1) матрицей плотности, весь образец, содержащий N спинов, теперь становится одним элементом статистического ансамбля и описывается (2I +1)N ´ (2I +1)N матрицей плотности. Такое видоизменение никоим образом не ограничивается ядерным магнетизмом, напротив, оно весьма часто встречается в статистической физике» а именно всякий раз, когда переходят от описания систем со слабыми взаимодействиями, например, таких, как молекулы газа при низком давлении, к описанию сильно взаимодействующих систем, таких, как атомы Кристалла. Первый подход соответствует методу Максвелла – Больцмана, а второй — методу Гиббса.
Стационарное состояние, следуя методу Гиббса, можно описать следующим образом. Если к системе спинов приложено линейно поляризованное вдоль оси Ох радиочастотное поле Н1 cos wt, то при стационарных условиях система приобретает намагниченность, составляющая которой вдоль этой же оси равна
Мх = H1 {c' (w) cos wt +c'' (w) sin wt}. (la)
Условие линейности или отсутствия насыщения предполагает, что c' и c'' не зависят от H0. c' и c'' можно измерить отдельно, а c'' пропорционально скорости поглощения радиочастотной энергии образцом.
Выведем общую формулу для c'' (w). Выше было показано, что в линейной теории резонанса между c' (w) и c'' (w) существуют независимо от природы рассматриваемой системы общие соотношения (соотношения Крамерса – Кронига), позволяющие вычислить одну из этих величин, когда для всех значений частоты известна другая.
Ниже, чтобы избежать путаницы, мы будем обозначать через М макроскопическое значение намагниченности образца и через M — соответствующий квантовомеханический оператор. Между ними имеет место соотношение
М = <M> = Sp {rM}, (2)
где r – статистический оператор, или матрица плотности, описывающая систему спинов. Пусть ħH — полный гамильтониан системы в отсутствие внешнего радиочастотного поля. Если до приложения радиочастотного поля система находится в тепловом равновесии при температуре Т, то ее статистический оператор определяется выражением
 (3)
 (3) 
которое просто означает, что статистическое поведение системы можно описать, если ее энергетическим уровням ħEn приписать населенности, пропорциональные exp(—ħEn/kT).
При наличии радиочастотного поля уравнение движения для r имеет вид
 (4)
 (4) 
где V – объем образца. Чтобы решить (4) относительно r,
сделаем подстановку
r* = ei H tr e – i H t , (5)
которая преобразует (4) в уравнение
 . (6)
. (6) 
Предположим, что радиочастотное поле было включено в момент, когда образец находился в тепловом равновесии и
r (–¥) = r = r* (–¥).
В момент t решение (6) в линейном приближении относительно Н1 имеет вид
 ( 7)
 ( 7) 
Поэтому, возвращаясь к r [см. (5)], находим
 
 
 (8)
 (8) 
Если предположить, что до включения радиочастотного доля намагниченность вдоль оси x была равна нулю, т. е.
Мх (–¥) = Sp {r0Mx} =0,
то
 (9)
 (9) 
и, согласно определению (1 а),
 (10)
 (10) 
Учтем, что температура обычно достаточно высока для того, чтобы для равновесной матрицы плотности (3) можно было использовать линейное разложение
 
 
где e – единичный оператор; тогда восприимчивость c²(w) становится равной
 (11)
 (11) 
откуда, интегрируя по частям, получаем
 (12)
 (12) 
Выражение (12) можно преобразовать к более компактной форме двумя способами.
 Вблизи поверхности Земли ускорение свободного падения зависит ОТ широты местности. Это объясняется нешарообразностью формы Земли и влиянием суточного вращения Земли вокруг своей оси.
Вблизи поверхности Земли ускорение свободного падения зависит ОТ широты местности. Это объясняется нешарообразностью формы Земли и влиянием суточного вращения Земли вокруг своей оси.
 Законы физики основаны на фактах, установленных опытным путем.
Законы физики основаны на фактах, установленных опытным путем.
 Турбина 16 века использовавшая энергию движущейся воды, применялась для привода ирригационных насосов.
Турбина 16 века использовавшая энергию движущейся воды, применялась для привода ирригационных насосов.