Ионизация атомов в сильных электрических полях

Подобно тому, как сильное электрическое поле вырывает электроны из металлов оно вырывает их также и из отдельных атомов газа. Явление это называют иногда «автоионизацией» атомов и его причину легко понять, если рассмотреть вид потенциальной энергии элек­трона, в атоме при наличии внеш­него электрического поля. Пусть, потенциальная энергия электрона в отсутствие внешнего поля есть U (r). Внешнее электрическое по­ле ξ пусть направлено по оси OZ. Тогда вся потенциальная энергия электрона равна

(6.1) .

Рис. 6.1. Сложение атомного и внешнего поля.

Рассмотрим вид потенциальной кривой на оси OZ(x = y = 0, r = | z |). В отсутствие внешнего поля (ξ = 0) U' = U (r) и имеет вид, изображенный на рис. 6.1 пунктиром. Дополнительная потен­циальная энергия во внешнем поле еξz изобразится пунктирной прямой аа'. Кривая полной потенциальной энергии U, получаю­щаяся сложением, проведена на рис. 6.1 сплошной линией а'b' и ab. Мы видим, что около точки z0 образуется потенциальный барьер, разделяющий пространство на две области: внутреннюю z > z0 и внешнюю z < z0, в каждой из которых потенциальная энергия U' меньше U' (z0) = Um. На рис. 6.1 приведены также два уровня энергии Е` и Е". Если энергия Е = Е" > Um, то элект­рон не будет удерживаться вблизи атома, а будет удаляться в область отрицательных z. Если же энергия электрона Е = Е' < Um, то, согласно законам классической механики, элект­рон останется во внутренней области. По квантовой механике в этом случае просачивание через барьер все же будет иметь, место. Таким образом, здесь создается положение вещей, вполне анало­гичное тому, которое имеет место при радиоактивном распаде.

Теперь уже совсем нетрудно понять причину ионизации атомов полем. При включении поля получается барьер, через который электроны проникают во внешнее пространство. Если высота барь­ера Uт меньше энергии электрона, то частицы будут проходить («над барьером») и по классической механике. Поэтому и класси­ческая механика приводит к возможности ионизации атома внеш­ним электрическим полем. Различие заключается лишь в том, что по законам квантовой механики эта ионизация должна наступать при меньших полях, нежели это предписывается механикой клас­сической, так как, согласно квантовой механике, для возмож­ности ионизации не нужно, чтобы барьер оказался ниже энергии электрона. Ясно, однако, что при малых полях барьер будет очень широким и прозрачность его будет очень мала.

Явление автоионизации можно наблюдать таким образом: до­пустим, что мы наблюдаем какую-либо спектральную линию, обусловленную электронным переходом из состояния Е` в Ео (см. рис. 6. 1). По мере увеличения электрического поля эта линия будет смещаться (Штарк - эффект), и если поле достигнет столь большой величины, что прозрачность барьера будет велика, то эле­ктрон в состоянии Е` будет чаще вылетать из атома, проходя через барьер (ионизация), нежели падать в нижнее состояние (Ео), излу­чая свет. Благодаря этому спектральная линия будет слабеть, пока, наконец, совсем не исчезнет. Это явление можно наблюдать на бальмеровской серии атомного водорода.

Для того чтобы иметь возможность проследить действие элект­рического поля различной напряженности, устраивают так, что различные части спектральной линии обусловливаются светом, исходящим от атомов, находящихся в полях различной силы. Именно, в объеме светящегося газа электрическое поле возрастает в направлении, параллельном щели спектроскопа (до некоторого предела, достигнув которого оно вновь

Рис 6.2 Расщепление спектральных линий бальмеровской серии при больших электрических полях

падает). На фотографии (см. рис. 6.2) рис приведены результаты подобного опыта. Буквами β, γ, δ, ε, ζ, обозначены линии серии Бальмера ( Нβ — переход n = 4 → n = 2, Нγ — переход n = 5 → n = 2, Нδ — переход n = 6 → n = 2 и Нε — переход n = 7 → n = 2 ). Приложенное электри­ческое поле растет снизу вверх. Белые линии на фотографии суть линии одинаковой напряженности поля. Из фотографии видно, что линии сначала расщепляются. Это расщепление увеличивается по мере роста поля (из расщепления линии Нβ легко видеть поло­жение линии максимальной напряженности поля). При некоторой напряженности поля спектральная линия исчезает.

Сравнение линий β, γ, δ, ε, показывает, что они исчезают в по­следовательности ε, δ, γ (при достигнутых полях β полностью не исчезает). Это есть последовательность возрастания энергии возбужденного состояния. Из рис, 6.1 явствует, что чем выше энергия электрона, тем меньше при заданном поле ширина и вы­сота барьера, т. е. тем больше его прозрачность. Таким образом, наблюдающаяся последовательность в исчезновении спектральных линий вполне соответствует нашему толкованию этого явления как результата туннельного эффекта. То обстоятельство, что крас­ные компоненты расщепленных линий исчезают раньше фиолетовых, также получает полное разъяснение при более детальном рассмотрении волновых функций электрона. Именно, состояния, отвечающие линиям, смещенным в красную сторону, обладают тем свойством, что в них интенсивность электронного облака больше в области барьера, нежели в состояниях для фиолетовых компо­нент. Благодаря этому ионизация протекает более благоприятным образом.

Перейти на страницу: 1 2

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.