Пусть каждому собственному значению Е невозмущенного уравнения (66.2) принадлежит лишь одна собственная функция j , соответственно ¾ одна амплитуда с . Подставим в уравнение (66.11) ряда (66.14) и (66.15) и соберем члены с одинаковыми степенями параметра l
(67.1) Это представление уравнения (66.11) позволяет легко решить его методом последовательных приближений. Мы получим нулевое приближения, если положим l=0; тогда получаем
m = 1,2,3,…, k, … (67.2) Это ¾ уравнение для невозмущенной системы Н . Пусть нас интересует, как меняется уровень Е и собственная функция j под действием возмущения W. Тогда из решений (67.2) мы берем k-е:
(67.3) т.е. все с =0, кроме с =1.
Решение (67.3) мы будем называть решением в нулевом приближении. Это решение мы подставляем в уравнение (67.1) с тем, чтобы найти следующее, первое приближение. Подстановка дает
(67.4) где через 0(l ) обозначены члены порядка l и выше. Ограничиваясь первым приближением, мы должны считать эти члены малыми и отбросить их. Тогда получаем
(67.4') Если мы возьмем из этих уравнений уравнение номера m = k, то получим
(67.4'') Отсюда находим поправку к Е первого приближения:
(67.5) Из уравнений c m = k находим поправки к амплитудам c , именно, если m = k, то (67.4') дает
(67.4''') Отсюда
(67.6) Найдем теперь второе приближение; для этого следует учесть члены с l . Подставим первое приближение (67.5) и (67.6) в (67.1), тогда
(67.7) где через 0(l ) обозначены члены порядка l и выше. Пренебрегая этими членами, получим уравнения для определения Е и c (второе приближение). При этом уравнение номера m = k получается в виде
(67.7') Отсюда находим поправку к энергии во втором приближении:
(67.8) Из уравнений с m = k найдем c :
(67.9)
Эту процедуру можно продолжать и дальше, переходя ко все более и более высоким приближениям. Мы ограничимся вторым приближением и выпишем результат. Согласно (66.14), (66.15) и (67.3), (67.5), (67.6), (67.8) и (67.9) имеем
(67.10)
(67.11)
Из этих формул видно, что предположение о малости оператора W в сравнении с Н означает малость отношения
(67.12) при выполнении этого условия поправочные члены в (67.10) и (67.11) малы, и собственные значения Е оператора H и его собственные функции с (k) близки к собственным значениям и собственным функциям оператора Н . Условия (67.12) ¾ это условие применимости теории возмущений. На основании (66.10) это условие может быть записано также в виде
(67.13) где W суть матричные элементы оператора возмущения.
Пользуясь (66.4) и (67.6), а также (67.5), мы можем написать наше решение в "х"-представлении:
(67.14)
(67.15) Из последней формулы видно, что поправка к уровням в первом приближении равна среднему значению энергии возмущения в невозмущенном состоянии (j ).
Из условия пригодности метода теории возмущения (67.13) непосредственно видно, что успех приближенного расчета зависит от того, какой именно квантовый уровень мы рассчитываем. Так, например, в кулоновском поле разности энергий соседних уровней выражаются формулой При малых n эта величина может быть гораздо больше W . Для больших же n она стремится к нулю, как 1/n , и условие (67.13) может оказаться несоблюденным. Поэтому метод теории возмущений может быть пригодным для расчета поправок нижних квантовых уровней и непригодным для расчета поправок для высоких квантовых уровней. Это обстоятельство нельзя не иметь в виду при приложении теории возмущений к конкретным проблемам.
 Вблизи поверхности Земли ускорение свободного падения зависит ОТ широты местности. Это объясняется нешарообразностью формы Земли и влиянием суточного вращения Земли вокруг своей оси.
Вблизи поверхности Земли ускорение свободного падения зависит ОТ широты местности. Это объясняется нешарообразностью формы Земли и влиянием суточного вращения Земли вокруг своей оси.
 Законы физики основаны на фактах, установленных опытным путем.
Законы физики основаны на фактах, установленных опытным путем.
 Турбина 16 века использовавшая энергию движущейся воды, применялась для привода ирригационных насосов.
Турбина 16 века использовавшая энергию движущейся воды, применялась для привода ирригационных насосов.