Опыты Дюлонга и Пти

К 1819 г. двое французов, Пти (1791—1820) и Дюлонг (1785—1838), собрали достаточно данных, чтобы сделать общий вывод: удельные теплоемкости химических элемен­тов — не случайные величины, а связаны простым образом с атомными весами элементов.

Некоторые ученые смотрели свысока на процесс сбора эмпири­ческих данных, который Резерфорд позднее назвал «кол­лекционированием марок». Эта работа в сущности подхо­дит для тех, кто не обладает творческим умом, но может научиться методам исследования и имеет достаточное тер­пение, чтобы тщательно выполнять эксперименты. Может быть, это, так сказать, научная деятельность «второго порядка», но она тем не менее играет огромную роль в раз­витии науки. Сказанное относится и к работе Пти и Дю­лонга, которые поставили перед собой задачу измерить удельные теплоемкости как можно большего числа твердых химических элементов.

Метод Пти и Дюлонга был основан на измерении скоро­сти охлаждения веществ. Если некоторые количества вещества поместить в одинаковые сосуды и нагреть, то скорость последующей потери ими тепла должна зависеть только от превышения температуры нагретого вещества над температурой окружающей среды. Поэтому, сравни­вая скорости изменения температуры различных веществ, можно сопоставлять их удельные теплоемкости. Следует отметить, что в этом методе можно не принимать во вни­мание закон охлаждения Ньютона — одно из получен­ных им не очень известных соотношений,— пока сопо­ставляются скорости охлаждения двух тел от одной и той же температуры.

Результаты экспериментов Пти и Дюлонга обнару­жили такую закономерность: чем тяжелее элемент, тем меньше его удельная теплоемкость. В настоящее время понятие атома прочно заняло свое место в системе наших знаний и разработаны методы измерения атомных весов, гораздо более точные, чем те, которыми пользовался Даль­тон. Поскольку плотность возрастает в той или иной сте­пени вместе с атомным номером, Дюлонг и Пти попробо­вали помножить удельную теплоемкость на атомный вес и обнаружили замечательное постоянство их произведения, как показывает приводимая ниже табл. 2. Атомные веса в ней взяты по отношению к атомному весу кислорода, принятому за единицу. Если считать атомный вес кисло­рода равным 16, как принято в настоящее время, то про­изведение, о котором идет речь, примет известное значение 6,0, называемое «атомной теплоемкостью».

Таблица 1

Атомные веса элементов, взятые по отношению

к атомному весу кислорода, который принят за единицу

Химический элемент

Удельная тепло­емкость

Относительный атомный вес

Произведение

Висмут

0,0288

13,30

0,3830

Свинец

0,0293

12,95

0,3794

Золото

0,0298

12,43

0,3704

Платина

0,0314

11,16

0,3740

Олово

0,0514

7,35

0,3779

Серебро

0.0557

6,75

0,3759

Цинк

0^0927

4,03

0,3736

Теллур

0,0912

4,03

0,3675

Медь

0,0949

3.957

0 . 3755

Никель

0,1035

3.69

О; 381 9

Железо

0.1100

3.392

0,3731

Кобальт

0,1498

2,46

0.3685

Сера

0,1880

2,011

0,3780

Перейти на страницу: 1 2

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.