Профессии жидких кристаллов

Другим важным обстоятельством является то, что проводимость в жидких кристаллах носит ионный харак­тер. Это означает, что ответственными за перенос элек­трического тока в ЖК являются не электроны, как в ме­таллах, а гораздо более массивные частицы. Это поло­жительно и отрицательно заряженные фрагменты моле­кул (или сами молекулы), отдавшие или захватившие из­быточный электрон. По этой причине электропроводность жидких кристаллов сильно зависит от количества и хими­ческой природы содержащихся в них примесей. В част­ности, электропроводность нематика можно целена­правленно изменять, добавляя в него контролируемо» количество ионных добавок, в качестве которых могут выступать некоторые соли.

Из сказанного понятно, что ток в жидком кристалле представляет собой направленное движение ионов в системе ориентированных палочек-молекул. Если ионы представить себе в виде шариков, то свойство нематика обладать проводимостью вдоль директора в р. больше, чему, представляется совершенно естественным и по­нятным. Действительно, при движении шариков вдоль директора они испытывают меньше помех от молекул-палочек, чем при движении поперек молекул-палочек. В результате чего и следует ожидать, что продольная проводимость о II будет превосходить поперечную про­водимость.

Более того, обсуждаемая модель шариков-ионов в системе ориентированных палочек-молекул с необходи­мостью приводит к следующему важному заключению. Двигаясь под действием электрического тока поперек направления директора (мы считаем, что поле приложе­но поперек директора), ионы, сталкиваясь с молекула­ми-палочками, будут стремиться развернуть их вдоль направления движения ионов, т. е. вдоль направления электрического тока. Мы приходим к заключению, что электрический ток в жидком кристалле должен приво­дить к переориентации директора.

Эксперимент подтверждает выводы рассмотренной выше простой механической модели прохождения тока в жидком кристалле. Однако во многих случаях ситуа­ция оказывается не такой простой, как может показать­ся на первый взгляд.

Часто постоянное напряжение, приложенное к слою нематика, вызывает в результате возникшего тока не однородное изменение ориентации молекул, а периоди­ческое в пространстве возмущение ориентации директо­ра. Дело здесь в том, что, говоря об ориентирующем молекулы нематика воздействии ионов носителей тока, мы пока что пренебрегали тем, что ионы будут вовле­кать в свое движение также и молекулы нематика. В ре­зультате такого вовлечения прохождение тока в жид­ком кристалле может сопровождаться гидродинамичес­кими потоками, вследствие чего может установиться пе­риодическое в пространстве распределение скоростей течения жидкого кристалла. Вследствие обсуждав­шейся в предыдущем разделе связи потоков жидкого кристалла с ориентацией директора в слое нематика воз­никнет периодическое возмущение распределения директора. Подробней на этом интересном и важном в при­ложении жидких кристаллов явлении мы остановимся ниже, рассказывая об электрооптике нематиков.

Флексоэлектрический эффект.

Говоря о форме мо­лекул жидкого кристалла, мы пока аппроксимировали ее жесткой палочкой. А всегда ли такая аппроксимация хороша? Рассматривая модели структур молекул, можно прийти к заключению, что не для всех соединений приб­лижение молекула-палочка наиболее адекватно их фор­ме. Далее мы увидим, что с формой молекул связан ряд интересных, наблюдаемых на опыте, свойств жид­ких кристаллов. Сейчас мы остановимся на одном из таких свойств жидких кристаллов, связанном с отклоне­нием ее формы от простейшей молекулы-палочки, про­являющемся в существовании флексоэлектрического эффекта.

Интересно, что открытие флексоэлектрического эф­фекта, как иногда говорят о теоретических предсказа­ниях, было сделано на кончике пера американским физи­ком Р. Мейером в 1969 году.

Рассматривая модели жидких кристаллов, образо­ванных не молекулами-палочками, а молекулами более сложной формы, он задал себе вопрос: «Как форма молекулы может обнаружить себя в макроскопических свойствах?» Для конкретности Р. Мейер предположил, что молекулы имеют грушеобразную или банановидную форму. Далее он предположил, что отклонение формы молекулы от простейшей, рассматривавшейся ранее, сопровождается возникновением у нее электрического дипольного момента.

Возникновение дипольного момента у молекулы не­симметричной формы — типичное явление и связано оно с тем, что расположение «центра тяжести» отрица­тельного электрического заряда электронов в молекуле может быть несколько смещено относительно «центра тяжести» положительных зарядов атомных ядер моле­кулы. Это относительное смещение отрицательных и по­ложительных зарядов относительно друг друга и приво­дит к возникновению электрического дипольного момен­та молекулы. При этом в целом молекула остается нейт­ральной, так как величина отрицательного заряда элек­тронов в точности равна положительному заряду ядер. Величина дипольного момента равна произведению за­ряда одного из знаков на величину их относительного смещения. Направлен дипольный момент вдоль направ­ления смещения от отрицательного заряда к положи­тельному. Для грушеобразной молекулы направление ди­польного момента по симметричным соображениям должно совпадать с осью вращения, для банановидной молекулы — направлено поперек длинной оси.

Перейти на страницу: 1 2 3 4 5 6 7 8 9

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.