Билет № 15

Экспериментальное доказательст­во существования свободных элект­ронов в металлах.

Эксперименталь­ное доказательство того, что прово­димость металлов обусловлена дви­жением свободных электронов, было дано в опытах Л. И. Мандель­штама и Н. Д. Папалекси .

На катушку наматывают прово­локу, концы которой припаивают к двум металлическим дискам, изоли­рованным друг от друга. К концам дисков при помощи скользящих контактов присоединяют галь­ванометр.

Катушку приводят в быстрое дви­жение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы не­которое время движутся относитель­но проводника по инерции, и, следо­вательно, в катушке возникнет электрический ток. Ток существует незна­чительное время, так как из-за со­противления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Направление тока говорит о том, что он создается движением отрица­тельно заряженных частиц.

Если пропустить ток от аккуму­лятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означа­ет, что с изменением температуры сопротивление проводника меняется.

Если при температуре, равной 0° С, сопротивление проводника рав­но Ro, а при температуре t оно равно R, то относительное изменение со­противления, как показывает опыт, прямо пропорционально изменению температуры t:

Коэффициент пропорционально­сти α называют температурным ко­эффициентом сопротивления. Он ха­рактеризует зависимость сопротив­ления вещества от температуры. Температурный коэффициент сопро­тивления численно равен относи­тельному изменению сопротивления проводника при нагревании на 1 К.

Для всех металлических проводни­ков α>0 и незначительно меняется с изменением температуры. У чистых металлов .

У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается. Зависимость удельного сопротивления от от температуры:

В 1911 г. голландский физик Камерлинг-Оннес открыл замечатель­ное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротив­ление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля. Это явление было названо сверх­проводимостью

.

Сверхпроводимость наблюдается при очень низких температурах — около 25 К.

Если в кольцевом проводнике, находящемся в сверхпроводящем со­стоянии, создать ток, а затем устра­нить источник электрического тока, то сила этого тока не меняется сколь угодно долго. В обычном же несверхпроводящем проводнике электриче­ский ток в этом случае прекращается.

Сверхпроводники находят широ­кое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые со­здают магнитное поле на протяже­нии длительных интервалов времени без затрат энергии. Ведь выделения теплоты в сверхпроводящей обмотке не происходит.

Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле раз­рушает сверхпроводящее состояние. Такое поле может быть создано то­ком в самом сверхпроводнике. По­этому для каждого проводника в сверхпроводящем состоянии сущест­вует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя.

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.