Флуктуациями, появление самоорганизаций в открытых системах и период флуктуаций в макроскопические эффекты.

Остановимся на важнейших особенностях самоорганизации. Во-первых, она возможна только в средах достаточного объема.

Во-вторых, для ее поддержания требуется постоянный подвод внешней энергии: иначе, например, не может существовать долго температура Т1>Т2

. В-третьих, как показывает специальное исследование, рассмотренные выше процессы могут быть только в реальных, а не идеальных газах, т. е. нужно, чтобы между частицами существовали взаимодействия типа сил Ван-дер-Ва-альса или более сильные. Другими словами, самоорганизация в данном случае возникает как результат совокупного действия большого числа короткодействующих межмолекулярных сил.

Мы рассмотрели примеры самоорганизации при наличии внешнего источника энергии. Но самоорганизация может возник­нуть не только в этих случаях. Хорошо известно, что при охлаждении газа он сначала превращается в жидкость (за счет межмолекулярных сил получаются сгустки молекул, которые постепенно разрастаются в капли), а затем может образоваться и кристалл. В идеальном кристалле все атомы расположены в строго фиксированных положениях. Снова происходит самоорга­низация. В этом случае не только не надо подводить энергию извне, но, наоборот, ее надо вывести из системы, так как кристаллическое состояние энергетически более выгодно, чем, например, жидкое.

Во всех этих случаях рассматривались необратимые процессы, при которых энтропия уменьшается (при кристаллизации—до минимума), но, и это принципиально, всегда при этом имелся контакт с внешней средой! Наличие такого контакта и является тем существенным фактором, который отличает необратимые процессы в изолированных системах от аналогичных процессов в неизолированных, или открытых, системах.

Второе начало термодинамики и утверждение о возрастании энтропии при любом необратимом процессе было сформулировано именно для изолированных систем. Значит, нельзя просто перено­сить его на неизолированные системы. Чтобы перейти к описанию неизолированных систем, надо расширить понятие энтропии и считать, что ее приращение dS состоит из двух частей, так что

dS = dSnep + dSc

где dSсист— приращение энтропии, произ­веденной в системе; dSnep—энтропия, пе­ренесенная через границы системы. Утвер­ждение о том, что энтропия только воз­растает при необратимых процессах, от­носится лишь к dSc и поэтому dScист ≥0. Величина dS может быть как положительной

так и отрицательной и поэтому как положительной, так и отрицательной может быть и полная величина dS. Если система изолирована, но не находится в состоянии равновесия и в ней происходят какие-то мак­роскопические изменения, то они могут развиваться самопроиз­вольно (это и означает, что система полностью изолирована) только в направлении, которое приводит к возрастанию энтропии. Процессы с уменьшением энтропии возможны только при контакте с внешней средой. Этот контакт с внешней средой должен быть постоянным в тех случаях, когда необходимо поддерживать устойчивое динамическое состояние системы или усиливать его (случай конвекции или вихрей в потоке жидкости), и временным до перехода системы в конечное состояние (случай кристаллизации). Таким образом, «антиэнтропийные» процессы могут быть только в неизолированных системах.

Перейти на страницу: 1 2 

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.