Кинетическое уравнение

Носители заряда в металле или полупроводнике могут подвергаться действию внешних полей и градиентов температуры. Они также испытывают рассеяние на примесях, колебаниях решетки и т. д. Эти эффекты должны быть сбалансированы — нас интересуют такие ситуации, в которых электрон ускоряется полем, но при рассеянии теряет избыточные энергию и импульс. В этой главе мы рассмотрим «обычные» кинетические свойства, наблюдаемые при наложении постоянных полей.

Общий метод решения этой задачи основан на кинетическом уравнении, или уравнении Болъцмана. Мы рассматриваем функцию fk(r) — локальную концентрацию носителей заряда в состоянии k в окрестности точки r. Строго говоря, эту величину можно определить только в терминах мелкозернистых распределений, средних по ансамблю, матриц плотности и т. д. Имеется обширная литература по этому вопросу, но она относится скорее к формальному аппарату квантовой статистической механики, чем к теории твердого тела.

Посмотрим теперь, какими способами функция fk(r) может изменяться во времени. Возможны процессы трех типов:

1. Носители заряда приходят в область пространства вблизи точки r и уходят из нее. Пусть vk — скорость носителя в состоянии k. Тогда в течение интервала времени t носители заряда в этом состоянии пройдут путь tvk. Следовательно, на основании теоремы Лиувилля об инвариантности фазового объема системы число носителей в окрестности точки r в момент времени t равно числу их в окрестности точки r – tvk в момент времени 0:

fk(r, t) = fk(r – tvk, 0). (35)

Это означает, что скорость изменения функции распределения из-за диффузии есть

¶fk/¶t]diff = – vk׶fk/¶r = – vk×Ñfk. (36)

2. Внешние поля вызывают изменение волнового вектора k каждого носителя, согласно равенству

(37)

Величину можно рассматривать как «скорость» носителя заряда в k-пространстве, так что по аналогии с равенством (35) имеем

(38)

следовательно, под действием полей функция распределения меняется со скоростью

(39)

(мы использовали здесь обозначение ¶fk/¶k для градиента в k-пространстве — оператора Ñk).

3. Влияние процессов рассеяния оказывается более сложным. Мы ограничимся здесь в основном упругим рассеянием. При этом функция fk меняется со скоростью

¶fk/¶t]scatt = ∫{ fk' (1 – fk) – fk (l – fk')}Q(k, k') dk'. (40)

Процесс рассеяния из состояния k в состояние k' приводит к уменьшению fk. Вероятность этого процесса зависит от величины fk — числа носителей в состоянии k, и от разности (1 – fk') — числа свободных мест в конечном состоянии. Имеется также обратный процесс, переход из k' в k, который ведет к увеличению функции fk; он пропорционален величине fk'(1 – fk). Очевидно, надо просуммировать по всевозможным состояниям k'. Для каждой пары значений k и k' существует, однако, «собственная» вероятность перехода Q (k, k'), равная скорости перехода в случае, когда состояние k полностью заполнено, а состояние k' вакантно. Согласно принципу микроскопической обратимости, та же функция дает и скорость перехода из k' в k, поэтому под интегралом появляется общий множитель.

Кинетическое уравнение выражает следующее: для любой точки r и для любого значения k полная скорость изменения функции fk(r) равна нулю, т. е.

¶fk/¶t]scatt + ¶fk/¶t]field + ¶fk/¶t]diff = 0. (41)

Отметим, что здесь рассматривается стационарное, но не обязательно равновесное состояние. Для последнего функция распределения обозначается через f0k, оно осуществляется только в отсутствие полей и градиентов температуры.

Допустим, однако, что рассматриваемое стационарное распределение не слишком сильно отличается от равновесного.Положим

gk = fk – f0k. (42) где

f0k = 1/{exp[(E k – z)/kT] + 1} (43)

Здесь нужно проявить некоторую осторожность. Именно, как определить функцию f0k в случае, когда температура зависит от координат? Будем считать, что в каждой точке можно корректно определить локальную температуру T(r), и положим

gk(r)=fk(r) – f0k{3T(r)}. (44)

Если введение локальной температуры вызывает затруднения, можно потребовать, чтобы окончательное решение удовлетворяло какому-либо дополнительному условию, например

Перейти на страницу: 1 2

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.