Графит

Структура кристаллической решетки графита показана на рис. 2. Кристаллы графита построены из параллельных друг другу плоскостей, в которых расположены атомы углерода по углам правильных шестиугольников. Расстояние между соседними атомами углерода (сторона каждого шестиугольника) 143 пм, между соседними плоскостями 335 пм. Каждая промежуточная плоскость несколько смещена по отношению к соседним плоскостям, как это видно на рисунке. Каждый атом углерода связан с тремя соседними в плоскостях атомами неполярными ковалентными связями. Каждый атом углерода в атомной решетке графита связан с тремя соседними атомами углерода, тремя sp2—sp2 общими электронными парами, расположенными в соответствии с sp2 - гибридизацией, под углами в 120 град, т. е. каждые четыре связанных между собой атома углерода в графите расположены в центре и вершинах равностороннего треугольника. Четвертые валентные электроны каждого атома располагаются между плоскостями и ведут себя подобно электронам металла, чем и объясняется электрическая проводимость графита в направлении плоскостей. Связь между атомами углерода, расположенными в соседних плоскостях, очень слабая (межмолекулярная, или ван-дер-ваальсова), хотя отчасти, благодаря присутствию электронов проводимости, похожа на металлическую. В связи с такими особенностями кристаллы графита легко расслаиваются на отдельные чешуйки даже при малых нагрузках.

Рис. 2. Структура кристаллической решетки графита.

Уникальная способ-ность атомов углерода соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соедине-ний углерода, изучаемых органической химией.

Теплопроводность графита, измеренная в направлении плоскости слоев, в пять раз больше теплопроводности, изме-ренной в поперечном направлении; электричес-кая проводимость в плоскостном направлении в десять тысяч раз превышает проводимость в поперечном направ-лении.

Электронная конфи-гурация атома углерода такова: 1s2 2s2 2p2. Следовательно, его четыре внешних электрона не одинаковы — они соответствуют различным орбиталям; два электрона не спарены. В связанном состоянии (валентном) один из электронов 2s переходит на р-орбиталь (для этого понадобится около 96 ккал/моль) так, что состояние атома может быть выражено: 1s2 2s 2p3. В результате мы получим атом с тремя 2р и одним 2s-электроном: 2s2px2py2pz.

Возможны несколько видов гибридизации: sp, sp2 и sp3.

Рис. 3. Схема гибритизации электронных состояний:

а - образование двух sp-гибритных облаков

б - образование трех sp2-гибритных облаков

в - образование четырех sp3-гибритных облаков  

При гибридизации типа sp смешиваются атомные орбитали s и р. При этом орбитали, например, рy и рz не меняются, а орбитали рx и s дают гибридную форму. Так как гибридная функция может иметь вид s+p или s-р, то получаются две орбитали, направ-ленные диамет-рально противопо-ложно друг другу (рис. 3а).

Перейти на страницу: 1 2

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.