Фотоэлектронные умножители

Основными элементами ФЭУ являются: фотокатод, фокуси­рующая система, умножительная система (диноды), анод (коллек­тор). Все эти элементы располагаются в стеклянном баллоне, откаченном до высокого вакуума ( 10-6 мм рт.ст.).

Для целей спектрометрии ядерных излучений фотокатод обычно располагается на внутренней поверхности плоской торце­вой части баллона ФЭУ. В качестве материала фотокатода выби­рается вещество достаточно чувствительное к свету, испускаемому сцинтилляторами. Наибольшее распространение получили сурьмяно-цезиевые фотокатоды, максимум спектральной чувствительности которых лежит при l= 3900¸4200 А, что соответствует, максимумам спектров люминесценции многих сцинтилляторов.

Рис. 4. Принципиальная схема ФЭУ.

Одной из характеристик фотокатода является его квантовый выход в, т. е. вероятность вырывания фотоэлектрона фотоном, попавшим на фотокатод. Величина e может достигать 10-20%. Свойства фотокатода характеризуются также интегральной чув­ствительностью, представляющей собой отношение фототока (мка) к падающему на фотокатод световому потоку (лм).

Фотокатод наносится на стекло в виде тонкого полупрозрач­ного слоя. Существенна толщина этого слоя. С одной стороны, для большого поглощения света она должна быть значительной, с другой стороны, возникающие фотоэлектроны, обладая очень малой энергией не смогут выходить из толстого слоя и эффектив­ный квантовый выход может оказаться малым. Поэтому подби­рается оптимальная толщина фотокатода. Существенно также обеспечить равномерную толщину фотокатода, чтобы его чувстви­тельность была одинакова на всей площади. В сцинтилляционной g-спектрометрии часто необходимо использовать твердые сцинтилляторы больших размеров, как по толщине, так и по диаметру. Поэтому возникает необходимость изготавливать ФЭУ с боль­шими диаметрами фотокатодов. В отечественных ФЭУ фотокатоды делаются с диаметром от нескольких сантиметров до 15¸20 см. фотоэлектроны, выбитые из фотокатода, должны быть сфокусированы на первый умножительный электрод. Для этой цели используется система электростатических линз, которые пред­ставляют собой ряд фокусирующих диафрагм. Для получения хороших временных характеристик ФЭУ важно создать такую фокусирующую систему, чтобы электроны попадали на первый динод с минимальным временным разбросом. На рис.4 при­ведено схематическое устройство фотоэлектронного умножителя. Высокое напряжение, питающее ФЭУ, отрицательным полюсом присоединяется к катоду и распределяется между всеми электро­дами. Разность потенциалов между катодом и диафрагмой обеспе­чивает фокусировку фотоэлектронов на первый умножающий электрод. Умножающие электроды носят название динодов. Диноды изготовляются из материалов, коэффициент вторичной эмиссии которых больше единицы (s>1). В отечественных ФЭУ диноды изготовляются либо в виде корытообразной формы (рис. 4), либо в виде жалюзи. В обоих случаях диноды располагаются в линию. Возможно также и кольцеобразное располо­жение динодов. ФЭУ с кольцеобразной системой динодов обла­дают лучшими временными характеристиками. Эмитирующим слоем динодов является слой из сурьмы и цезия или слой из специальных сплавов. Максимальное значение s для сурьмяно-цезиевых эмиттеров достигается при энергии электронов 350¸400 эв, а для сплавных эмиттеров — при 500¸550 эв. В первом случае s= 12¸14, во втором s=7¸10. В рабочих режимах ФЭУ значение s несколько меньше. Достаточно хорошим коэф­фициентом вторичной эмиссии является s= 5.

Перейти на страницу: 1 2 3

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.