Принцип работы сцинтилляционного счетчика

Сцинтилляционный счетчик представляет собой сочетание сцинтиллятора (фосфора) и фотоэлектронного умножителя (ФЭУ). В комплект счетчика входят также источник электрического питания ФЭУ и радиотехническая аппаратура, обеспечивающая усиление и регистрацию импульсов ФЭУ. Иногда сочетание фос­фора с ФЭУ производится через специальную оптическую систему (светопровод).

Принцип работы сцинтилляционного счетчика состоит в сле­дующем. Заряженная частица, попадая в сцинтиллятор, произво­дит ионизацию и возбуждение его молекул, которые через очень короткое время (10-6 — 10-9 сек) переходят в стабильное состоя­ние, испуская фотоны. Возникает вспышка света (сцинтилляция). Некоторая часть фотонов попадает на фотокатод ФЭУ и выбивает из него фотоэлектроны. Последние под действием приложенного к ФЭУ напряжения фокусируются и направляются на первый электрод (динод) электронного умножителя. Далее в результате вторичной электронной эмиссии число электронов лавинообразно увеличивается, и на выходе ФЭУ появляется импульс напряжения, который затем уже усиливается и регистрируется радиотехниче­ской аппаратурой.

Амплитуда и длительность импульса на выходе определяются свойствами как сцинтиллятора, так и ФЭУ.

В качестве фосфоров используются:

Ø органические кристаллы,

Ø жидкие органические сцинтилляторы,

Ø твердые пластмассовые сцинтилляторы,

Ø газовые сцинтилляторы.

Основными характеристиками сцинтилляторов являются: све­товой выход, спектральный состав излучения и длительность сцинтилляций.

При прохождении заряженной частицы через сцинтиллятор в нем возникает некоторое число фотонов с той или иной энергией. Часть этих фотонов будет поглощена в объеме самого сцинтилля­тора, и вместо них будут испущены другие фотоны с несколько меньшей энергией. В результате процессов реабсорбции наружу будут выходить фотоны, спектр которых характерен для данного сцинтиллятора.

Световым выходом или конверсионной эффективностью сцин­тиллятора c называется отношение энергии световой вспышки , выходящей наружу, к величине энергии Е заряженной частицы, потерянной в сцинтилляторе,

где — среднее число фотонов, выходящих наружу, — сред­няя энергия фотонов. Каждый сцинтиллятор испускает не моно­энергетические кванты, а сплошной спектр, характерный для данного сцинтиллятора.

Очень важно, чтобы спектр фотонов, выходящих из сцинтилля­тора, совпадал или хотя бы частично перекрывался со спектраль­ной характеристикой ФЭУ.

Степень перекрытия внешнего спектра сцинтилляции со спек­тральной характеристикой . данного ФЭУ определяется коэф­фициентом согласования

где — внешний спектр сцинтиллятора или спектр фотонов, выходящих наружу из сцинтиллятора. На практике при сравне­нии сцинтилляторов, сочетаемых с данными ФЭУ, вводят понятие сцинтилляционной эффективности, которая определяется следу­ющим выражением:

Сцинтилляционная эффективность учитывает как число фотонов, испускаемых сцинтиллятором на единицу поглощенной энер­гии, так и чувствительность данного ФЭУ к этим фотонам.

Обычно сцинтилляционную эффективность данного сцинтиллятора определяют путем сравнения со сцинтилляционной эффек­тивностью сцинтиллятора, принятого за эталон.

Интенсивность сцинтилляции изменяется со временем по экспоненциальному закону

Перейти на страницу: 1 2

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.