Виды фотоэлектрических преобразователей

ГФП обладают также более благоприятными с точки зрения требований к преобразователям СЭС эксплутационными характеристиками по сравнению с кремниевыми ФЭП. Так, в частности, возможность достижения малых начальных значений обратных токов насыщения в p-n-переходах благодаря большой ширине запрещённой зоны позволяет свести к минимуму величину отрицательных температурных градиентов КПД и оптимальной мощности ГФП и , кроме того, существенно расширять область линейной зависимости последней от плотности светового потока. Экспериментальные зависимости КПД ГФП от температуры говорят о том, что повышение равновесной температуры последних до 150-180 °С не приводит к существенному снижению их КПД и оптимальной удельной мощности. В то же время для кремниевых ФЭП повышение температуры выше 60-70 °С является почти критическим - КПД падает вдвое.

Благодаря устойчивости к высоким температурам арсенид-галлиевые ФЭП позволяют применять к ним концентраторы солнечного излучения. Рабочая температура ГФП на GaAs доходит до 180 °С, что уже является вполне рабочими температурами и для тепловых двигателей, паротурбин. Таким образом, к 30-процентному собственному КПД арсенид-галлиевых ГФП (при 150°C) можно прибавить КПД теплового двигателя, использующего сбросовое тепло охлаждающей фотоэлементы жидкости. Поэтому общий КПД установки, которая к тому же использует и третий цикл отбора низкотемпературного тепла у охлаждающей жидкости после турбины на обогрев помещений - может быть даже выше 50-60 %.

Также ГФП на основе GaAs в значительно меньшей степени, чем кремниевые ФЭП, подвержены разрушению потоками протонов и электронов высоких энергий вследствие высокого уровня поглощения света в GaAs, а также малых требуемых значений времени жизни и диффузионной длины неосновных носителей. Более того, эксперименты показали, что значительная часть радиационных дефектов в ГФП на основе GaAs исчезает после их термообработки ( отжига) при температуре как раз порядка 150-180 °С. Если ГФП из GaAs будут постоянно работать при температуре порядка 150 °С, то степень радиационной деградации их КПД будет относительно небольшой на протяжении всего срока активного функционирования станций ( особенно это касается космических солнечных энергоустановок, для которых важен малые вес и размер ФЭП и высокий КПД).

В целом можно заключить, что энергетические, массовые и эксплутационные характеристики ГФП на основе GaAs в большей степени соответствуют требованиям СЭС и СКЭС (космич.), чем характеристики кремниевых ФЭП. Однако кремний является значительно более доступным и освоенным в производстве материалом, чем арсенид галлия. Кремний широко распространён в природе, и запасы исходного сырья для создания ФЭП на его основе практически неограниченны. Технология изготовления кремниевых ФЭП хорошо отработана и непрерывно совершенствуется. Существует реальная перспектива снижения стоимости кремниевых ФЭП на один - два порядка при внедрении новых автоматизированных методов производства, позволяющих в частности, получать кремниевые ленты , солнечные элементы большой площади и т.п.

Цены на кремниевые фотоэлектрические батареи снизились за 25 лет в 20-30 раз с 70-100 долл/ватт в семидесятых годах вплоть до 3,5 долл/ватт в 2000 г. и продолжают снижаться далее. На Западе ожидается переворот в энергетике в момент перехода цены 3-долларового рубежа. По некоторым расчётам, это может произойти уже в 2002 г., а для России с нынешними энерготарифами этот момент наступит при цене 1 ватта СБ 0,3-0,5 доллара, то есть, при на порядок более низкой цене. Тут играют роль вместе взятые: тарифы, климат, географические широты, способности государства к реальному ценообразованию и долгосрочным инвестициям. В реально действующих структурах с гетеропереходами КПД достигает на сегодняшний день более 30% , а в однородных полупроводниках типа монокристаллического кремния - до 18%. Среднее значение КПД в солнечных батареях на монокристаллическом кремнии сегодня около 12%, хотя достигает и 18%. Именно, в основном, кремниевые СБ можно видеть сегодня на крышах домов разных стран мира.

В отличие от кремния галлий является весьма дефицитным материалом, что ограничивает возможности производства ГФП на основе GaAs в количествах, необходимых для широкого внедрения.

Галлий добывается в основном из бокситов , однако рассматривается также возможность его получения из угольной золы и морской воды. Самые большие запасы галлия содержатся в морской воде, однако его концентрация там весьма невелика, выход при извлечении оценивается величиной всего в 1% и, следовательно, затраты на производство будут, вероятно, чрезмерно большими. Технология производства ГФП на основе GaAs с использованием методов жидкостной и газовой эпитаксии (ориентированного роста одного монокристалла на поверхности другого {на подложке} ), не развита ещё до такой степени, как технология производства кремниевых ФЭП и в результате этого стоимость ГФП сейчас существенно выше (на порядки) стоимости ФЭП из кремния .

Перейти на страницу: 1 2 3 4

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.